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Abstract
The binding of ligands to receptor proteins embedded in cell membranes drives cellular responses that involve either second
messenger cascades or directly gated ion channels. It is known that a single class of receptor proteins expresses ~98% of its
graded response to ligand concentrations over four orders of magnitude, where the response is measured by the equilibrium
proportion of bound ligand–receptor complexes. This four-decadic concentration range is centered on a logarithmic scale
around logK, where K is the dissociation constant defined by the ratio of ligand–receptor unbinding (k–) to binding (k+) rates.
Remarkably, this four-decadic concentration range is intrinsic to all homogeneous ligand–receptor (or, equivalently, enzyme–
substrate) systems. Thus, adapting the sensitivity of cell membranes to narrower or wider ranges of ligand concentrations,
respectively, requires multivalent receptors or heterogeneous populations of receptors. Here we use a normalized Shannon–
Weaver measure of information entropy to represent the efficiency of coding over given concentrations for membranes
containing a population of univalent receptors with a specified distribution of dissociation constants, or a homogeneous
population of strongly cooperative multivalent receptors. Assuming a specified level of resolution in the response of cellular
or neural systems downstream from the membrane that ‘read’ the ligand concentration ‘code’, we calculate the range of
concentrations over which the coding efficiency of the membrane itself is maximized. Our results can be used to hypothesize
the number of receptor types associated with the membranes of particular cells. For example, from data in the literature, we
conclude that the response of most general olfactory sensory neurons can be explained in terms of a homogeneous population
of receptor proteins, while the response of pheromone sensory neurons is satisfactorily explained by the presence of two types
of membrane receptor protein with pheromone-binding dissociation constants that have values at least one to two orders of
magnitude apart.

Introduction
The ability of cell membranes to code chemical concen-
tration, as a way of controlling cellular processes, is central
to all cellular, physiological and sensory systems—in short,
to all of life. At their most basic level, endocrine, paracrine,
synaptic and chemosensory processes involve messenger
ligands (hormones, chemical mediators, neurotransmitters,
odorants, flavorants, etc.) binding to specific protein
receptors protruding from the surface of cell membranes
(Lauffenburger and Lindeman, 1993). If L is the density
of ligands, A the density of unbound receptors and B the
density of bound receptors, then the ligand–receptor associ-
ation and disassociation process is represented by the
iconograph L + A¾ B, where k1 and k–1 are the association
and dissociation rates, respectively. The ratio K, which is
equal to k–1/k1, is referred to as the dissociation constant for
the reaction.

If we  are  able to manipulate genes to obtain ligand–

receptor binding processes with specified dissociation
constants, then we can pose the following design question:
‘What should the dissociation constants be of one or more
types of receptors in a cell membrane in order to obtain
the most efficient coding across a membrane with respect
to a specified range of ligand concentrations?’ The answer
depends on what we mean by ‘most efficient’ coding, which
will be clarified below. Also, the question is posed independ-
ent of any intracellular processes that may subsequently
operate to enhance coding (e.g. second messenger systems),
or other mechanisms such as ‘spare receptor capacity’
(Cleland and Linster, 1999), which enhances the sensitivity
of membranes to low ligand concentrations.

A simple example of a ligand code is that some cellular
function is ‘turned on’ (e.g. firing of a neuron, cell division
or synthesis of a particular product) if the concentration of
ligand outside a cell exceeds a specified threshold. A more
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sophisticated example of a ligand code is that a cell exhibits
a graded response to ligand concentration (e.g. a graded
rate of firing in a neuron or a graded rate at which a cell
synthesizes a product). On–off responses are translations
of a two-state ligand code: concentration above or below a
threshold. Graded responses are translations of an m-state
ligand code (m > 2), where m can also be referred to as the
resolution of the code. This resolution, which corresponds
to categorizing the proportion of bound receptors into m
discrete intervals, cannot be infinite because of the presence
of noise in the system. Noise arises from several sources,
including stochastic variations in the ligand concentration
outside the cell and the finite size of ligand and receptor
populations (i.e. sampling effects during ligand–receptor
interactions), and introduces errors that limit the distin-
guishability of states.

Classical information theory, as developed primarily
by Shannon and  Weaver  (Shannon,  1948; Shannon and
Weaver, 1949; Ingels, 1971), provides a mathematical tool for
evaluating how well a channel transmits information coded
by a set of discretized states. It is the most appropriate
mathematical theory available for analyzing the information
capacity and transmission properties of a channel. We have,
thus, used this theory to evaluate the information-processing
qualities of receptor-embedded cell membranes with respect
to transmitting information regarding which one of m
possible discretized ligand concentration levels exists out-
side a cell over a period of time sufficiently long to consider
our system at equilibrium [but see Getz and Abers (Getz and
Abers, 1997)]. This is certainly not the first time Shannon–
Weaver information theory has been applied to biological
systems (Kueppers, 1990; Chapeau-Blondeau and Raguin,
1997; Panzeri et al., 1999), but it is the first time it has
been used to obtain an objective measure and analysis of
‘efficient’ coding by cell membranes of ligand concentration.

The converse of the ‘design’ question posed above,
couched in the context of information theory, is the follow-
ing ‘existence’ question: ‘If a membrane expresses receptors
of different types characterized by a set of dissociation
constants, then what is its information capacity?’ Surpris-
ingly, neither this question nor the above ‘design’ question
has been asked, although both the dynamic and equilibrium
aspects of reversible and irreversible ligand–receptor bind-
ing processes (or, equivalently, substrate–enzyme interaction
processes) have been investigated intensively in several
contexts, including the control of neuronal (Rospars et
al., 1996; Kaissling, 1998; Getz, 1999) and, even, ecological
processes (Keating and Quinn, 1998).

Considerable attention has been paid to Michaelis–
Menten substrate–enzyme cascades (Brooks and Storey,
1992; Sakamoto, 1994) to multivalent binding processes
where more than one ligand or substrate molecule binds to
the same receptor or enzyme (e.g. the dynamics of oxygen
and hemoglobin where up to four oxygen molecules bind to
one hemoglobin molecule), and to situations where different

substrates or ligands compete for the same enzyme or recep-
tor (e.g. neurotransmitter antagonists such as curare or
a-bungarotoxin which bind to acetylcholine receptors). Less
attention has been paid in the literature to situations where
the same ligand binds to more than one type of receptor
molecule on the surface of a common membrane; although
this problem has been of interest in the context of odor
coding (Ennis, 1991; Malaka et al., 1995). The  issue of
whether receptor neurons express more than one receptor
protein in their membranes has become more important
with the discovery that  ~1000  genes or  1%  of the gen-
ome of mice and rats code for olfactory receptor proteins
(Mombaerts, 1999). Information theory can be used to shed
some light on this question, as will become apparent in later
sections of this paper.

Considerations of receptor valency and heterogeneity are
critical for understanding the graded responses of cell
membranes across biologically meaningful ranges of ligand
concentrations. From an equilibrium analysis it is known
that, irrespective of the particular ligand or receptors
involved, a homogeneous population of univalent receptors
expresses ~98% of its graded response to ligand concentra-
tions (i.e. from 1 to 99% of receptors are bound) over four
orders of magnitude in ligand concentration (Rospars et
al., 1996). Multivalent or heterogeneous ligand–receptor
systems, however, have more complex characteristics in
terms of the range of concentrations over which they
respond. These characteristics, as is evident from this study,
are relatively easy to understand and can be used to hypo-
thesize the likely number of receptor types expressed in the
afferents of olfactory sensory neurons. This is currently an
important question because it is not known whether one or
more receptor proteins are expressed in olfactory receptor
cells. For example, if there are no intracellular mechanisms
to amplify strongly the effects of ligand binding when much
less than 1% of receptors are bound, our analysis suggests
that pheromone sensory neurons in some insects probably
express more than one receptor protein. Similarly, our
analysis suggests that the response range of generalist
olfactory sensory neurons in insects is compatible with these
neurons expressing no more than one type of receptor
protein.

In this presentation, we first review the equilibrium
curves for the proportion of receptors in a membrane bound
to ligands as a function both of ligand concentration and of
the value of the dissociation constants for homogeneous,
heterogeneous and multivalent receptor populations. We
then explore the concept of coding resolution in the context
of ‘just discernable differences’ in ligand concentration and
define the informational transfer properties of the membrane
using the Shannon–Weaver entropy measure (Shannon,
1948; Ingels, 1971). We use this measure to define a concept
of membrane ‘coding efficiency’. We numerically calculate
the coding efficiency of membranes with regard to ligand
concentrations uniformly distributed over a region of
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concentration space defined by a ‘range parameter’, while
the heterogeneity of the values of the dissociation constants
of the membrane receptors is characterized in terms of a
‘receptor heterogeneity parameter’.

After presenting a suite of results on how coding range,
heterogeneity of dissociation constants among receptors,
and coding resolution affect coding efficiency, we theor-
etically bound the coding efficiency of finite resolution
systems using an infinite resolution analog to measure the
entropy of coding efficiency. Specifically, we find the size
of the range over which a theoretical membrane, with an
entropy-maximizing linear response, codes the same amount
of information as a homogeneous receptor membrane over
an infinite range of  concentrations. Our presentation con-
cludes with a discussion of the implications of our theory
for biological systems. This includes a discussion of data
currently available (Kaissling, 1987) on the response of
pheromonal receptor cells in the antennae of the male
moth, Antherea polyphemus, to sex pheromones produced
by females conspecifics and an assessment of the size of the
range over which human T-cells can efficiently code inter-
leukin-2 concentrations (Smith, 1988).

Models and analysis

Equilibrium response curves

In our analysis, we focus on the equilibrium proportion,
y(x), of receptors (or enzymes) rather than the actual num-
ber that have ligands (or substrates) bound to them as a
function of x, the decadic logarithmic concentration of
ligands at density L (i.e. x = logL). We consider situations
where a signal is coded by the concentration of a particular
ligand and the membrane transducing this signal expresses
one type or several different types of receptors. The equi-
librium curve for the case of a homogeneous, univalent
ligand–receptor binding process is the well-known S-shaped
or logistic curve (Figure 1A)

(1)

The ‘half-saturation’ constant, K, which in this context is
known as the equilibrium dissociation constant (in the
context of enzyme–substrate binding theory, K is known as
the Michaelis–Menten constant), is the ratio of the rate at
which ligands disassociate and associate with the receptors
[e.g. see equation 2.13 in Lauffenburger and Lindermann
(Lauffenburger and Lindermann, 1993)], taking into
account the logarithmic transformation in x and the pro-
portional, rather than absolute, value of y). In the case of
membranes with r types of receptors able to bind to a ligand
at density L, if the relative density of these receptors is given
by the proportions ρi, i = 1, . . ., r, then the equilibrium

response curve (1) generalizes, as discussed by Malaka et al.
(Malaka et al., 1995), to (recall that L = 10x)

(2)

where Ki is the equilibrium dissociation constant for ligands
binding to receptors of the ith type. Our purpose is to
consider first systems with one type of receptor and then
systems with two or three different types of receptor, all of
which respond to the ligand in question. In the case of
multiple receptors, to keep the analysis simple, we make
the assumption that the different receptor types occur at the
same frequencies. We note that unequal frequencies will
give results that are intermediate between a system in which
the frequencies are equal and a system with fewer types of
receptors also with frequencies that are equal. For example,
results obtained for a system that has two types of receptors
in proportions 3/4 and 1/4 is intermediate between a system
in which all receptors are of the first type and a system in
which the proportions of the two types are 1/2.

Finally, for highly cooperative n-valent receptor-binding
processes (i.e. one in which almost all receptors are either
unbound or have n ligands bound to them, with an in-
significant proportion of receptors having 1, 2, . . ., n – 2 or
n – 1 ligands bound to them), the equilibrium proportion
of bound receptors, as discussed by Brown and Rothery
(Brown and Rothery, 1993), can be approximated by the Hill
equation:
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Figure 1 The proportion of bound receptors is plotted here as a function
of the logarithm of the ligand concentration over eight orders of magnitude
[equation (1), (2) or (3), depending on the case]. The parameter ρ =
log(K2/K1) is a measure of receptor heterogeneity in systems with two types
of receptor or symmetric systems with three or more types of receptor. The
integer n is the valency of the receptor (Hill’s constant) in a highly
cooperative systems [equation (3)]. When not specified, the default values
for ρ and n are ρ = 0 (i.e. the system is homogeneous, as in panels A and
D) and n = 1 (the receptors are univalent, as in panels A, B, C, E and F).
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(3)

Of course, equations (2) and (3) can be combined to
generalize to heterogeneous, multivalent systems. But this
complexity is not considered here because, as will become
apparent below, cooperative multivalency and heterogeneity
have opposite effects on the entropy of information in
coding ligand concentration over identified concentration
ranges.

Information and resolution

The amount of information that can be associated with the
equilibrial proportion of bound receptor–ligand complexes
in the membrane of a cell depends in practice on several
different factors that limit the resolution of a chemical
coding system. First, the signals contain noise: ligand con-
centrations may fluctuate during the production of signals
downstream from the membrane, but noise is also added
during the transmission process due to turbulence in the
transmission medium (e.g. air or water). Second, stoch-
asticity arises due to sampling: the number of receptor and
ligand molecules is finite with given probabilities for ligand–
receptor encounters (i.e. a ligand–receptor encounter has
the elements of a Bernoulli process, but numbers are gener-
ally large enough so that this factor is relatively unimport-
ant compared, say, with the first factor). Third, the system
is stochastic because distributions are involved: in reality,
equations (1)–(3) are the means of stochastic processes in
which ligands and receptors encounter one another at rates
that are means of distributions with variance dependent, for
example, on the variance of ligand velocity distributions.
Fourth, computational properties of the system down-
stream from the membrane determine how large the change
in the equilibrium proportion of bound receptor complexes
needs to be to get a ‘just discernible’ difference.

The existence of a just discernible difference implies that
even without noise, the resolution of the system is finite.
If the intent of the signal is to evoke changes in a single
cell over a short period of time then we might expect the
resolution of the system to be relatively low. On the other
hand, if the ‘intent’ of the signal is to guide an organism
to an odor source, then networks of neurons are involved
in the computation and we might expect the resolution of
the system to be somewhat higher. It has been argued, for
example, that humans appear to have the ability to distin-
guish about 30 levels of concentration of odors (Wilson and
Bossert, 1963).

We analyze coding efficiency in the context of Shannon–
Weaver theory (Shannon, 1948; Ingels, 1971). The analysis
depends not only on the desired ligand coding range (‘design
question’) or the range of ligand concentrations that can
be expected under natural conditions (‘existence question’),
but, as discussed above, on the resolution of the decoding

process downstream from the membrane (design and
existence questions) (Figure 2). Although we have to select,
a priori, a level of resolution, we explore the properties of
systems over a range of resolutions sufficiently broad to
provide us with a comprehensive view of the effects of reso-
lution on coding. As a limiting case, we also consider what
happens if resolution could become infinite, even though
noise ensures that the resolution of real systems can never
be infinite. This limit leads to a continuous formulation of
the problem, which we then analyze to obtain a benchmark
on the efficiency of homogeneous univalent ligand–receptor
coding represented by transfer function (1). Finally, we
note that in systems with relatively high noise levels, the
resolution of coding can only be high if the signal is sampled
over a long period of time or over many different cells read-
ing the same signal.

Discrete systems

Suppose we are interested  in how efficient  a particular
system is at coding concentrations into m categories over the
interval x ∈ (–∞,∞), where x = logL is a measure of ligand
concentration L. Assume, as depicted in Figure 2, that a
minimum and maximum detectable level, x1 and xm – 1,
respectively, exist in the sense that all concentrations below
the minimum level are coded as category 1 and all concen-
trations above the maximum level are coded as category m.
Consider a partition of the interval [x1,xm – 1] into (m – 2)
equal subintervals to obtain the m-subintervals X1 =
(–∞,x1), X1 = [xi–1,xi], i = 2, . . ., m – 1, and Xm = [xm – 1,∞],
where obviously
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Figure  2 We regard a membrane as a coding channel: the ligand
concentration is the signal, the proportion of bound receptors (solid curve)
is the transfer function specified by equation (1), and the resolution m
depends on systems downstream from the membrane (e.g. cell organelles
or  brain  neuropil) that decode the proportion of bound receptors at
equilibrium into m categories, thereby producing a graded response of the
systems to ligand concentration outside the cell. The straight line is the
linear relationship y(x) specified by equation (7) and using the notation [see
equation (5)] yi = y(xi) . This line is positioned so that p1 = y1 = 1/m and pm

= 1 – ym–1 = 1/m.
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(4)

For each of the m–1 values xi, i = 1, . . ., m – 1, as illustrated
in Figure 2, we can use our transformation equation (1)
or (2), whichever case applies, to calculate corresponding
values

yi = y(xi), i = 1, . . ., m – 1. (5)

If we now define y0 = 0 and ym = 1, we can generate a
partition of the ordinal axis defined by Y1 = [0,y(x1)], Yi =
y(xi – 1),y(xi)], i = 2, . . ., m – 1, and Ym = [y(xm – 1)], 1. The
length of each of these intervals Yi is equal to (Figure 2)

pi = yi – yi–1 (6)

In general, the values pi are not all equal. In the context
of our minimum and maximum points x1 and xm – 1, the
intervals Yi will only be equal for a linear function defined
by

(7)

for x = x1 and x = xm – 1 this function respectively yields y1 =
1/m and ym – 1 = (m – 1)/m (Figure 2), as well as producing
the required m equal values p1 = 1/m, i = 1, . . ., m.
According to the theory developed below, for a system of
resolution m > 2, this linear response function is the most
efficient way to code concentration on the partition
{X1, . . ., Xm} of the interval x ∈ (–∞,∞), obtained as de-
scribed above.

In real systems, noise and imprecision in components
downstream from the membrane imply that a concentration
x close to a node point xi will sometimes be assigned to
category Yi [because y(xi) is its upper bound] and sometimes
to category Yi+1 [because y(xi) is its lower bound]. If this
is done roughly with equal probability for x in a small
neighborhood of xi, then the values pi defined in equation
(5) will hardly be affected.

With these definitions, we use the Shannon–Weaver
measure

(8)

to define the information entropy of the m-resolution
membrane coding system formulated above. This measure
has the maximum value Im = log2m when all the prob-
abilities are equal (i.e. pi = 1/m, i = 1, . . ., m). This is why the
linear transfer function (7) has greater entropy than an S-
shaped transfer function (1) centered over the concentration

range for which function (7) is defined. To enable us to
compare the coding efficiency of various dose–response
(transfer) functions y(x) for different levels of resolution m,
we normalize the entropy value by dividing equation (8) by
log2m. Thus we define the efficiency of coding of a system
of resolution m to be

(9)

Parameters of analysis

The coding efficiency calculated from equations (8) and (9)
for a membrane transfer function defined by equation (1)
depends, through equations (5) and (6), on the locations of
the values xi, i = 1, . . ., m – 1 that define the partition
{X1, . . ., Xm} of the concentration space. If the points xi,
i = 1, . . ., m – 1, are all smaller than logK by at least two
decadic orders of magnitude then it follows from equations
(1), (5) and (6) that pi ≈ 0, i = 1, . . ., m – 1 and pm ≈ 1. Simi-
larly, if  the points xi, i = 1, . . ., m – 1, are all larger than
logK by at least two decadic orders of magnitude then it
follows from equations (1), (5) and (6) that pi ≈ 1 and pi ≈ 0
i = 2, . . ., m. In both cases Im ≈ 0, so coding efficiency
is close to zero. The maximum value for information
entropy for a specific partition {X1, . . ., Xm} is attained for a
membrane characterized by transfer function (1) when the
partition {X1, . . ., Xm} is located symmetrically with respect
to the transfer function (1) [i.e. symmetrically around the
half-saturation value, logK, which yields y(logK) = 0.5], as
illustrated in Figure 3. Thus, recalling that x = logL, for
membranes with a single type of receptor we maximize
coding efficiency for even values of m when xm/2 = logK and
for odd values of m when

We illustrate the drop-off in coding efficiency with
deviations from symmetry for the case m = 3 by defining the
variable

to represent the degree to which the construction of the
partition {X1, X2, X3}, as discussed in the sentence
containing equation (4), deviates from symmetry [for
example, at z = 0, logK = (x1 + x2)/2, which implies that on
a logarithmic scale, the value of K is midway between x1
and x2]. We then calculate the efficiency of coding using
equations (1), (5), (6), (8) and (9) for values of the parameter
z ranging from –4 to +4. At z = 0, the coding efficiency given
by equation (9) has the value 0.933 (Figure 3A), but drops
off rapidly as z decreases below 1/3 or increases above 1/3
(Figure 3A). Thus, if we are interested in characterizing
only the most efficient coding by homogeneous receptor
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membrane systems that have a specified resolution m over a
given range of ligand concentrations, then, by letting x1 and
xm – 1 represent the lower and upper values of the range,
respectively, we need only consider the system that is
symmetrically located  on this range,  and use  the range
parameter

∆X = xm–1 – xm

to characterize the width of the range. Taking this view, we
can plot the coding efficiency of such symmetrically located
systems for different resolutions m and for different values
of the range parameter ∆X. Implicit  in  this  view  is the
expectation that the particular values of the dissociation
constants of the receptors in cell membranes have either
been designed or evolved to maximize coding efficiency,
subject to constraints on the resolution m of the system and
on the heterogeneity of receptor types in the membrane. A
more general analysis that plots coding efficiency for
nonsymmetric systems, as we have done in Figure 3A for the
case m = 3 and ∆X = 1, adds little to our understanding of
how range affects coding efficiency for systems of different
resolution. Note that it will become apparent once we
present our  results  that, for  relatively narrow  ranges of
concentrations, the most efficient coding is not always at the
highest level of resolution. In fact, the results presented
below indicate that ranges of concentration of 1 to 1.5
orders of magnitude are most efficiently coded by systems
with resolutions of around m = 3–6 (Figure 4A).

In the two-receptor case, because we are dealing with
logarithms, coding efficiency is maximized by locating the
partition {X1, . . ., Xm} symmetrically around the geometric
mean of the logarithms of the associated dissociation
constants logK1 and logK2 (we will demonstrate this num-
erically below in the context of membranes with three types
of  receptor). Designating these constants so that K1 < K2,
we define the receptor heterogeneity parameter,

ρ = log(K2/K1)

ρ is a measure of heterogeneity because at ρ = 0 the two-
receptor-type system is equivalent to a one-receptor-type
system with dissociation constant K = K1 = K2.

For systems with three types of receptor, consider the

Figure 3 The coding efficiency of a membrane with resolution m = 3
receptors is plotted in terms of an asymmetry variable z for the following
cases: (A) a homogeneous univalent receptor membrane with fixed range
parameter ∆X = 1 and asymmetry variable z = logK – (x1 + x2)/2 (see text
for details) and (B) a membrane with three types of univalent receptor,
logK1 = –3, logK2 = 3, and the dissociation constant of the third receptor
is the asymmetry variable z = logK3 (i.e. symmetry is given by the value z =
0). The range parameter in this case is ∆X =3.

Figure 4 The coding efficiency of selected systems is plotted in terms of
decadic range ∆X = xm – 1 – x1 (see Figure 2) for the following cases: (A)
homogeneous univalent receptor membranes symmetrically located over
the defined range of ligand concentrations, (B) two-receptor-type
membranes with dissociation constants four orders of magnitude apart [i.e.
ρ = log(K2/K1) = 4] symmetrically located over the defined range of ligand
concentrations, (C) symmetrically located two-receptor-type membrane
systems with high resolution (m = 10), (D) two- and three-receptor-type
membranes systems symmetrically located over the defined range of ligand
concentrations that have a decoding resolution of m = 10 and dissociation
constants four orders of magnitude apart (ρ=4) and (E) monovalent (n = 1)
[equation (1)] and highly cooperative divalent [n = 2 in equation (3)] and
tetravalent [n = 4 in equation (3)] receptor systems with a decoding
resolution of m = 10 symmetrically located over the defined range of ligand
concentrations.
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placement of a third receptor type intermediate between two
others (i.e. consider the value of a dissociation constant K3,
satisfying K < K3 < K2). For the same reason that maximum
coding efficiency is obtained under symmetrical conditions
in the homogeneous-receptor case (see Figure 3A), in the
case of three types of receptors maximum coding efficiency
also requires symmetry (Figure 3B). This amounts to
requiring K3 to be the geometric mean of K1 and K2 [K3 =
√(K1K2)] (see Figure 1) and requiring the three subpopu-
lations to occur with equal frequency. Thus, in the context of
exploring maximum coding efficiency in three-receptor
systems that are constrained to have resolution m, we con-
fine ourselves only to these symmetrical situations that can
be characterized by the two parameters introduced above:
the range parameter ∆X and the heterogeneity parameter ρ.

In similar vein, using symmetry constraints, we can
analyze systems with four, five, six or more types of
receptors, in the context of the two parameters ∆X and
ρ. Thus, for example, if we have five types of receptor, a
symmetry assumption implies that K1 < K4 < K3 < K5 < K2,
with K3 = √(K1K2), K4 = √(K1K3) = √{K1[√(K1K2)]} =
K1

3/4K2
1/4 and, similarly, K5 = K1

3/4K2
1/4. By analogy,

symmetry conditions for four receptors imply that K1 < K3 <
K4 < K2, with K3 = K1

1/3K2
2/3 and K4 = K1

2/3K2
1/3.

The more types of receptors a membrane has, the greater
is the range of concentrations over which efficient coding
exists (see Figure 1F), although it will become obvious from
our simulations that systems with several receptor types do
not code smaller ranges very efficiently, unless the hetero-
geneity parameter ρ is comparatively small.

Results

Finite resolution simulations

Univalent receptor membranes with resolution m = 2 are
purely 0 and 1 classifiers. Their performance depends on
where the classification point, or threshold value, x1 = xm – 1
is located with respect to the placement of the transfer
function (1) on the concentration axis. If, for example, x1 =
xm – 1 = K, where K is the dissociation constant, then the
partition is X1 = (–∞,lnK), X2 = (lnK,∞) and p1 = 0.5, p2 =
0.5, and (1/log22)I2 = 1. Other partitions will lead to coding
with lower efficiencies.

Systems with resolution m = 3 are thus the lowest
resolution systems that have a free parameter ∆X with
corresponding information entropy measure I3(∆X) [i.e. the
value of expression (9) depends on the value of ∆X] that can
be analyzed to find the value of ∆X that maximizes I3(∆X).
In this section we analyze the coding properties of discrete
channels with the following resolutions: low (m = 3), moder-
ate (m = 6), high (m = 10) and very high (m = 100). These
levels of resolution span what we might reasonably expect to
see in real systems [recall that humans appear to have the
ability to distinguish about 30 levels of concentration of
odors (Wilson and Bossert, 1963)].

For homogeneous univalent receptor membranes sym-
metrically located over the defined range of ligand concen-
trations, our results indicate for the four levels of resolution
(Figure 4A) that the maximum efficiency I3(∆X)/log23 = 1
is achieved when the resolution m is 3 and the range para-
meter ∆X is 0.6 (equal to a four-fold change in concentration
L). With increasing resolution m,  the  maximum coding
efficiency drops slightly (Figure 4A), but the size of the
interval for which coding efficiency is high increases until,
for m=100, efficiencies of ~95% occur over a coding interval
of width ∆X ≈ 3 [when m=100, maximum coding efficiency
is I100(∆X)/log2100 = 0.96 at ∆X = 2.75 (Figure 4)]. For a
very high resolution system, a coding efficiency of 90%
can be achieved over five orders of magnitude and of 80%
over eight orders of magnitude (not shown in Figure 4).
Although values to three decimal places cannot be read
directly from Figure 4, for a single receptor system with
moderate resolution (m = 6) we obtained a maximum coding
efficiency of I6(∆X)/log26 = 0.996 at ∆X = 1.35 (this repres-
ents a 22- to 23-fold change in concentration). Thus it is
clear from Figure 4A that coding efficiency is critically
dependent on the overall resolution of the system. These
results suggest that coding efficiencies of >90% for concen-
tration ranges of five or more orders of magnitude require
membranes with more than one type of receptor (Figure
4B and C).

In Figure 4B we plot the coding efficiency of two-
receptor-type membranes with dissociation constants
four orders of magnitude apart [i.e. ρ = log(K2/K1) =  4]
symmetrically located over the defined range of ligand
concentrations. In this case (Figure 4B), very high resolution
systems (e.g. m = 100) have membranes with a coding
efficiency of >90% for concentration  ranges of 5.0–9.5
orders of magnitude, while low resolution systems (m = 3)
only have >90% coding efficiency for concentrations ranges
from 2.4 to 4.2 orders of magnitude. When m = 3 (Figure
4B), coding rapidly loses efficiency for concentration ranges
4.5 orders of magnitude. For symmetrically located two-
receptor-type membrane systems with high resolution (m =
10) (Figure 4C), membranes for which ρ = 3 have a greater
maximal efficiency (the maximum is I10/log21.00, correct to
two decimal points, at ∆X) than either membranes for which
ρ = 2 (the maximum is I10/log210 = 0.99 at ∆X = 2.2) or ρ = 4
(the maximum is I10/log210 = 0.93 at ∆X = 5.3). Further,
the maximum coding efficiency begins to decline strongly
as the value of ρ increases. Two-receptor-type membranes
for which ρ=4 provide reasonable levels of coding efficiency
(>80%) at high levels of resolution (m = 10) over ranges of
3.7–8.5 orders of magnitude (Figure 4B or C).

High-quality coding (>90% efficiency) cannot be achieved
with any two-receptor system for ranges of seven orders of
magnitude or greater (Figure 4B and C). It does not help to
increase the distance between the half-saturation response
levels of two receptors (for example, when ρ = 5, the coding
efficiency is always <90%) because a flat spot in the response
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curve develops around the mid-point logK3 = ½logK1K2 (see
Figure 1E).

The only way to improve coding efficiency over ranges of
concentration greater than seven orders of magnitude is to
add a third receptor type to the system to smooth out the
flat spot  in the  middle  of the range.  In Figure  4D, for
example, we compare two- and three-receptor-type mem-
branes systems symmetrically located over the defined range
of ligand concentrations that have a decoding resolution of
m = 10 and dissociation constants four orders of magnitude
apart (ρ=4); we  see that coding efficiency in the three-
receptor-type membrane moderately improves coding over
ranges of six to 10 orders of magnitude and strongly im-
proves coding over ranges of one to three orders of magni-
tude compared with two-receptor-type membrane systems.
In Figure 4D we also see, however, that homogeneous (one)
receptor systems are still best over smaller ranges.

Coding over large concentration ranges, however, may
not be our only concern. High-resolution coding over small
ranges of concentrations may be required in systems where
signals occur within a relatively narrow range of concentra-
tions (e.g. one order of magnitude or less). Plots of coding
efficiency of information for membranes with highly co-
operative symmetrically located multivalent-type receptors
in systems with a decoding resolution of m = 10 (Figure 4E)
indicate that divalency (n = 2) improves the coding efficiency
of monovalency (n = 1) over a  0.5 decadic  range  from
I10(0.5)/log210 = 0.7 to I10(0.5)/log210 = 0.95. Further,
tetravalency (n = 4) (see Figure 1D) achieves its maximum
coding efficiency I10(∆X)log210 = 0.98 at ∆X = 0.41 (i.e. a
six-fold range of concentrations). Thus coding over small
ranges (one or two decadal orders of magnitude) is not
efficient in homogeneous univalent single-receptor-type
systems, and even less so in heterogeneous-receptor systems.
High efficiencies over small ranges require some other type
of mechanism such as highly cooperative multivalent recep-
tors (Figure 4E) for which the transfer function is expressed
by equation (3).

Infinite resolution bound

Discrete channels can, in theory, be made continuous by
letting m→∞ [e.g. see Ingels (Ingels, 1971), Chapter 4.5], and
by replacing differences with derivatives and sums with
integrals. The information capacity of the channel, however,
becomes infinite. A finite relative measure of information
can be defined over any interval x ∈ [xl,xu] in terms of the
derivative y′(x) of the dose–response function y(x) by the
integral

(10)

(Ingels, 1971) where, for the convenience of avoiding scaling
constants in calculations, we express this entropy measure in

terms of a natural rather than the binary logarithmic scale
associated with the classical Shannon–Weaver measure.
Although a channel with infinite resolution is not realizable
in practice, as already mentioned, it provides a standard for
comparing systems with finite resolution. The focus of our
analysis here is to compare, in the limit as the resolution
becomes infinite, the information transfer properties of a
homogeneous univalent receptor membrane [i.e. transfer
function (1)], with the information transfer properties of
the linear transfer function (7). The motivation for this com-
parison is that the linear transfer function (7) maximimizes
information entropy for signals occurring over the associ-
ated range of concentrations (its linearity over this range
implies all pi in Shannon–Weaver measure (8) are equal,
thereby maximizing expression (9) (Ingels, 1971).

In the limit as m → ∞, defining xl = x1 and xu = xm – 1,
transfer function (7) approaches the ramp function

(11)

which is the cumulative distribution function of a rec-
tangular distribution on [xl,xu] . If the derivative of (11) is
inserted in equation (10), the integral yields

Note, this entropy measure itself becomes infinite if we let
xl → –∞ or xu → +∞.

On the other hand, when y(x) is given by the logistic
transfer function (1), it is easily shown that integration of
expression (10) yields I(–∞,∞) = 2. Thus, the information
entropy of homogeneous univalent receptor membranes has
the same information entropy as ramp function (11) defined
over a coding range determined by solving ln(xl – xu) = 2. On
transforming to a decadic logarithmic scale, this implies that
xl – xu = e2/ln10 ≈ 3.2. In short, the information entropy of
the logistic transfer function (1) over the log-concentration
range (–∞,∞) is equivalent to the information entropy of a
ramp function over a concentration range of 3.2 orders of
magnitude.

Discussion
The intrinsic characteristics of the mass action principle of
substrate–enzyme or ligand–receptor binding imply that
efficient coding of signals, presented at constant levels and
assuming that equilibrium conditions prevail, is restricted to
one or two orders of magnitude for low resolution systems
and four orders of magnitude for very high resolution
systems. In fact, when the resolution is infinite, the infor-
mation entropy of a homogeneous univalent membrane is
equivalent to maximum entropy that it is possible to attain
over 3.2 orders of magnitude. The only degree of freedom
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of homogeneous univalent membranes is the location of
the center of the transfer function, logK, which must be
symmetrically placed to maximize the coding efficiency of
membranes over any finite range of ligand concentration.
Efficient coding over concentrations larger that four orders
of magnitude can be achieved by introducing an ap-
propriate distribution of receptor types, with two types
being efficient over six or seven orders of magnitude, three
over seven to nine, and, although we limited our numerical
studies to three types of receptor, its obvious that increased
efficiency can be obtained with more types if  the range is
greater than 10 orders of magnitude. On the other hand,
efficient coding over concentrations less than two orders of
magnitude requires other mechanisms such as a membrane
containing a population of highly cooperative multivalent
receptors. Our analysis, and thus our comments, are con-
fined purely to the information transduction properties of
the membranes themselves. Various cellular mechanisms
associated, for example, with second messenger systems
could amplify signals at very low concentrations to increase
the coding performance of a cell as a whole.

In the context of the response of olfactory receptor
neurons, our results imply that for neurons exhibiting a
graded response over more than four orders of magnitude,
additional mechanisms are required for efficient coding. A
simple mechanism, as demonstrated here, is that such
neurons could be expressing at least two types of receptor
proteins in their dendritic membranes. The best data we
are aware of relating the response of olfactory receptor
neurons to odorant concentration are from studies in insects
(Kaissling, 1987; Fujimura et al., 1991). Data presented by
Fujimura et al. (Fujimura et al., 1991) on the response of
cockroach olfactory neurons to stimulation by a number of
different odorants, including n-alcohols, terpenes, aromatic
compounds, acids and acetates, indicate a response range of
at least two to three orders of magnitude, but most plots
do not show the full range of responses because either the
thresholds or saturation points are not apparent. The data
of Fujimura et al. do indicate that neurons sensitive to
terpineol have response ranges >3. No ranges of four orders
of magnitude or greater, however, are indicated in their data.

Kaissling (1987), on the other hand, presents data that
indicate that pheromonal receptor neurons in  the  moth
A. polyphemus are sensitive to at least five to six orders of
magnitude of the odorant E-6,Z-11-hexadecadienyl actetate
(see his Figure 29). According to our analysis, a membrane
responding to this broad a range of concentrations can
easily be explained by a membrane expressing two types of
receptor with dissociation constants K1 and K2 at least one
to two orders of magnitude apart (see Figure 1A–C). If, in
reality, the membrane of A. polyphemus pheromonal sen-
sory cell has only one type of E-6,Z-11-hexadecadienyl
actetate receptor, then some other type of mechanism is
needed to broaden the response of the membrane at low
levels of resolution, such as second messenger amplification

systems that work preferentially at low odorant concentra-
tion levels or spare receptor capacity for detecting odors at
low concentrations (Cleland and Linster, 1999).

By contrast, if the membrane of A. polyphemus phero-
monal sensory cell has two or more types of E-6,Z-11-hexa-
decadienyl  actetate receptors with different dissociation
constants, each receptor type can still remain highly specific
for this odorant because specificity and sensitivity, though
correlated to some extent, are not completely congruent.
Specificity relies primarily on matching complex geometries
in the shape of the ligand and receptor molecules while
sensitivity depends on forces of attraction between the two,
which are dependent partly on geometry and partly on the
distribution of electrical charges.

The results reported in Figure 4B and C can be used to
estimate the range over which human T-cells can efficiently
code interleukin-2. In a review, Smith (Smith, 1988) reports
that high-affinity interleukin-2 receptors in T-cell mem-
branes have a dissociation constant K of 7 × 10–10 M while
low-affinity receptors in the same T-cell membranes have
a dissociation constant of 3 × 10–8 M. Assuming equal
distributions of high and low affinity receptors in T-cell
membranes, these values yield a heterogeneity index

This value suggests from Figure 4C that for moderate
resolution systems (m = 10), coding is >80% efficient over
two to six orders of magnitude. Isolated cells, however,
might well have lower levels of resolution, in which case the
fact that these cells have two types of receptor ensures that
they can code at 80% efficiencies over at least two to three
orders of magnitude rather than the single order of mag-
nitude seen in Figure 4A for cells with only one type of
receptor (i.e. ρ = 0).

More precise assessments of the coding properties of
real systems require that we take into account additional
details that are not included in the analysis presented here.
However, the general principles of our equilibrium analysis
hold unless the system strongly violates the assumptions
of the model (e.g. if coding is fast compared with the
association rate constant so that the initial transients are
important, or if receptors themselves have multiple states
controlled by factors other than ligand binding).

In summary, we have demonstrated how the Shannon–
Weaver information measure can be used to obtain a con-
figuration of receptor types and affinity  constants  that
provide efficient coding by membranes over a priori
specified distributions of messenger ligand concentrations
and system resolution. For example, in a high-resolution
system (m = 10), the coding efficiency of a membrane will be
maximized by a homogeneous population of multivalent
receptors for uniformly distributed sets of signals  over
ligand concentration ranges smaller than one order of
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magnitude, by a homogeneous population of univalent
receptors for concentration ranges between one and three
orders of magnitude and by a heterogeneous population of
univalent receptors with optimally selected dissociation
constants for concentration ranges greater than three orders
of magnitude. Further, the coding efficiency of membranes
over small ranges generally improves with decreasing levels
of resolution and over large ranges generally improves with
increasing levels of resolution (the specifics are determined
by the actual size of the range, level of resolution, and
valency and heterogeneity of the receptors).

The analysis presented here implicitly assumes that
signals follow rectangular distributions over the finite
concentration intervals considered in the analysis. In real
systems, a complete analysis of the coding efficiency of
specific membrane  should account for the  fact that the
distribution of signals is unlikely to be rectangular. Such
signal distributions are easily incorporated by multiplying
the proportions pi in the Shannon–Weaver measure (8) by
a factor reflecting the degree to which signals arising in
the corresponding subinterval Xi differ from a rectangular
distribution.

From an evolutionary perspective, we might expect the
number of receptor types and their valency with respect to a
particular ligand to reflect the natural range of concentra-
tions over which biologically meaningful signals occur. The
complexity of the machinery decoding the signal should
evolve to reflect the amount of information contained in
the original signal, while mechanisms that reduce noise
should be favored by natural selection so that the appro-
priate  coding  efficiency is achieved for the system as a
whole. From a design perspective, the analysis presented
provides a method for calculating the number of recep-
tor types and corresponding dissociation constants needed
to obtain efficient coding over specified ranges of ligand
concentration.
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